Homework Solutions
 Chapter 11 - Page 713

Exercise 28

1. Let μ_{1} be the average number of cavities by children who use the New Brand and let μ_{2} be the average number of cavities by children who use the Competitor Brand. The hypotheses are

$$
\begin{array}{ll}
H_{0}: & \mu_{1}=\mu_{2} \\
H_{1}: & \mu_{1}<\mu_{2}
\end{array}
$$

2. $\alpha=0.01$.
3. $t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s_{p} \sqrt{\left.\frac{1}{n_{1}}+\right] \text { frac } 1 n_{2}}}$.
4. First, compute s_{p}. Enter the data into two separate lists in the TI-83 and use 1 -Var-Stats for each list. We obtain $\bar{x}_{1}=2.0, s_{1}=1.0, \bar{x}_{2}=2.636$, and $s_{2}=$ 2.335. Next, calculate s_{p}.

$$
\begin{aligned}
s_{p} & =\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \\
& =\sqrt{\frac{10 \cdot 1.0^{2}+10 \cdot 2.335^{2}}{20}} \\
& =1.796 .
\end{aligned}
$$

$$
\begin{aligned}
t & =\frac{1.0-2.636}{1.796 \sqrt{\frac{1}{11}+\frac{1}{11}}} \\
& =-\frac{1.636}{0.7658} \\
& =-2.136
\end{aligned}
$$

5. p-value $=\operatorname{tcdf}(-$ E99 $,-2.136,20)=0.0226$.
6. Accept H_{0}.
7. There is no difference in the average number of cavities between the two brands.

You could use 2-SampTTest to compute the values in Steps 4 and 5.

